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Local field gradients created by paramagnetic entities shorten
water proton relaxation times, particularly T,. This “novel” relax-
ation mechanism, now known as susceptibility-induced relaxation,
was described twenty years ago by Gueron, and later extended by
others to superparamagnetic particles which have a much larger
magnetization. Unfortunately, because of subtle but significant
errors, those results are valid only in the strict zero-field limit.
These errors are corrected in the present article, and new versions
of the relaxation equations are presented. The correction is shown
to be significant, not only for transverse and longitudinal relax-
ation in aqueous superparamagnetic colloids, where the “Gueron”
effect is known to be important, but even in some cases for
transverse paramagnetic relaxation. © 1999 Academic Press
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“nanoparticles”; these are small coated ferrimagnetic crystal
with superparamagnetic (SPM) moments that are much larg
than PM moments. The theory was accordingly extended t
describe such particle2,(3), using the Brillouin function,
rather than Curie’s law, to describe the larger induced magn
tization.

Unfortunately, all of these treatments contain subtle bu
significant errors. The purpose of this note is to correct thos
errors and to present, for the first time, what we hope is :
correct theory for this important type of nuclear magnetic
relaxation. For ease of comparison, we have used the sar
notation as the original references wherever possible, whil
maintaining internal consistency. All equations are in centime

superparamagnetic particles; relaxometry; nuclear magnetic relax-

| A A ter-gram-second (cgs) units.
ation dispersion (NMRD).

INNER-SPHERE RELAXATION

INTRODUCTION . .
Gueron {) was concerned with PM ions, and therefore usec

In 1975, Maurice Gueronlj introduced “a novel mecha- “inner-sphere” relaxation theory, which is the dominant mech.
nism” into the theory of nuclear magnetic relaxation by ele@nism for most PM ions. Inner-sphere relaxation occurs whe
tronic spins, viz., the effect of théme-averagedelectronic Protons bind temporarily to ions or ion complexes; the result
momentu as it aligns with the applied fielB,. This induced N9 rapid relaxation is then transferred to the free proton poc
magnetization creates local field inhomogeneities that deph&¥eProton or water exchange.
nearby protons, and hence cadseshortening. Since the field N _
gradients are a microscopic manifestation of macroscopic siRgcomposition of Spin

ceptibility, the effect is often referred to as susceptibility- Gueron separated the component of electronic spin along tt
induced relaxation. Gueron called the aligned component tgﬁp"ed fieldS,, into two subcomponents: a time-averaged (or.

“Curie spin” because the alignment of paramagnetic (PM) ioRg he called it, “Curie”) spin(S,) = Se, and a fluctuating spin,
increases with field strength according to Curie’s law. He then

showed that its effect on nuclear magnetic relaxation differs
from that of the fluctuating spin because “relaxation by the
constant Curie spi. . .is modulated only by the molecular
motion . . .[while] relaxation by the field of the fluctuating part
of the spin [is] modulated both by spin relaxation and mole&ince, by definition(s,) = 0, it follows that
ular motion.”

Gueron’s theory has become more important with the emer-
gence of a new type of MRI contrast agent known as magnetic

S;=%+s. [1]

(S = SE+ (s)). (2]

A _ . Gueron then showed that the effect of each component c
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(S2) = S(S+ 1)/3. [3] where
The modifications, therefore, involve replacing the coefficient S
S(S + 1)/3 by thecorrect expression fofS?) in the presence z= 3 em™s
of alignment. m= -S
Time-Averaged Component Using the definition of average magnetization,

Gueron used Curie’s law to describe the time-averaged s
aligned spin, as is appropriate for PM ions. For the sake of - (17 S
i Moui ; = m e™>,

greater generality, we shall use the Brillouin functi@n (8)=(12) X

(which, of course, reduces to Curie’s law for small spins). Thus e
we write which may be written as
Sc = (S) = SBy(X), (4] 9z
(8)=(82) 5, [7]
where
we obtain
S+3 (S+ax 1 X 27
Bs(x) = S coth s  “as cothz—s, (S? = (S%2) %
X
X = ShysBo/(KT),
vsBo/ (KT) _(S/Z)a(Z'SC)
and the constants have their usual meanings. dIX
The relaxation effect 08 is obtained by replacin§(S + 9Sc
1)/3 with SZ in the standard relaxation equations, and also = SWJF St.

setting the electronic relaxation tirhes — o (1). The latter

change is necessary becauge being a time average, is nOtDifferentiating and squaring the expression & (Eq. [4]),

affected by electronic spin fluctuations. This part of Gueronyg, 4 using the identity codfx) — sint?(x) = 1, we finally
treatment remains unaltered. obtain ’

Fluctuating Component

X
2\ — _ _
As the aligned component grows, the mean-squared fluctu- (S7) = S(S+ 1) — Scoth 2S° (€]
ating components?) is clearly reduced from its zero-field
value of §(S + 1)/3. This consideration led Gueron to writeThus the mean-squared fluctuating component is, from Eq. [2
(s?y =S(S+ 1)/3 — S, [5] X

(s2) = (S — S = S(S+ 1) — Sccoth 75

— 82 [9]

under the assumption thé®?)—i.e., the sum of the squared . o
amplitudes of average and fluctuating spins (Eq. [2])—remaifsgjuations [5] and [9] are compared in Fig. 1, fér= 25.
constant. But/S?) is not constant; it increases steadily fromWhile they agree at zero field, the difference increases, initiall
S(S + 1)/3 atzero field toS® in the high-field limit. asx’, and becomes quite large at high fields. (The v&8ue

A correct expression fofs?) may be obtained from the 25 was chosen to illustrate the correction more clearly, an
following general expression for the total mean-squared spind@#so because SPM particles, discussed below, have much larg

the z-direction: spins. However, even for PM spins suchSas %, the effect of
the correction is noticeable at 7 T, the field used by Gueron &
s an illustration.)
(S =(1/2) X m%e™s, [6]

Relaxation Equations

m=-S
The equations foff; and T, may now be obtained using
*There are actually two electronic relaxation times—longitudima)) @nd the modification procedure described by Gueron, but usin

transverses,): it is the former which is referred to here. The subscript 1 i€0- [9] instead of Eq. [5] for the fluctuating spin. The final
omitted for simplicity of notation. result is
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7 proton Larmor frequency) is incorporated in the inner-sphere
/ spectral density function

200

150 +
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50 —

.......... ‘.-..\\\\ / ji(w, T) = 1/(1 + (,021'2)- [12]

X This function is unity at zero frequency and falls to zero at higf
/ N frequencies, with a breakpoint at= 7* (see Fig. 2).
. N Equations [10] and [11] should replace Egs. [14] and [15] of
W/ Ref. @) (although the succeeding Egs. [[L4nd [15] remain
/. valid because of the stated restrictions). The meaning of th
/. equations is, as Gueron said, “transparent.” The first line of eac
/- equation represents relaxation by the “Curie spin,” and is propol
/ " tional to S; the second line corresponds to relaxation by the
/ . residual fluctuating spin, and falls off & increases. These
B equations are plotted in Fig. 3 f&= 25 (again, an intermediate
— . value between PM and SPM spins)= 0.5 ns, and, = 3r (i.e.,

10

Proton Larmor frequency (MHz)

Ts = 1p/2), and they are compared with the standard relaxatio
equations (dotted lines), whe(g’) is supposed to be field inde-
pendent and equal t§S + 1)/3. The susceptibility effect in-

100 1000

FIG. 1. Three different expressions f¢s?), the mean-squared fluctuating creases Strongly asbecomes smaller than, and the difference
component of spin along the applied field. The solid line shows the corrdé@M the standard relaxation rates is already importantfor
expression, Eqg. [9], and the dotted and dashed lines show earlier incori@et This alters Gueron’s assertiod) (that the new equations
versions, Egs. [5] and [13], respectively. The mean-squared alignedSpin, “differ significantly from [the standard ones] Onlyﬂ) > .” His

is also shown for comparison (long dashed line). The plots are draw® for
25, a value that is intermediate between PM and SPM spins.

statement followed from the (incorrect) assumption 83 is
constant, since the reduction in the fluctuating term (proportione
to §) then tends to balance the relaxation effect of the Curie terr

_ o) o2 (also proportional t&;) as T approaches,. However, a proper
1T, = (6/5)A {SCTDJi(w’ ™) T | S(S+ 1) accounting of the field dependence(&), as in Eq. [8], intro-
X :
— SCCOthTS_ Sé] Tji(w, T)} [10]
UT, = (1/5)A2{SéTD[3ji(m, ) + 4]+ | S(S+ 1)
X
— Sceoth 5 — é] 7[3ji(w, 7) + 4]}, [11]

whereA = 7y, y¢/r®. Following Gueron, a term in the stan-

dard equations that involves the electron Larmor frequencyg

ty functions

was omitted as being negligible at high fields. In these equa-==

tions, vy, and ys are, respectively, the proton and electron
gyromagnetic ratiosy is the binding distance, and is the
correlation time of the fluctuating magnetic field seen by the
proton, given by

= 751 + Tgl,

where 7, is the motional time constant (a combination of
rotational correlation time and residence time), agds the
electronic relaxation timé.(Note that this definition ofrp,
introduced by Gueron, is not the same as the usual definitiong
75 as diffusion time.)

a

Spectr;

T
1 10

T \
100 1000 10000

Proton Larmor frequency (MHz)

The dependence on magnetic fi@d (or, equivalently, on 1000 ns, respectively.

IEIG. 2. Spectral density functions used in the relaxation equations. The

solid line shows the inner-sphere functipnfor 7, = 2 ns. The long and short
dashed lines show the outer-sphere functjgrfor 7, = 2 ns with7s = 1 and
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2.0 account by Roch and Mulle), followed by Koenig and Kellar

(3), using a variation of Gueron’s approach.

Time-Averaged Component

1.5 4 The approach taken, as before, is to separate-tmmpo-
nent of spin into two parts: static and fluctuating (Eq. [1]). In
this case, use of the Brillouin function to descriBg, the
time-averagedz-magnetization, is mandatory because of the
much larger magnetic moment. As before, the relaxation effec
of S¢ is obtained by replacin§(S + 1)/3 with S, using Eq.
[4], in the standard relaxation equations and setting the ele
tronic relaxation timé g — .

1.0 1

Normalized relaxation rates

0.5 .
Fluctuating Component

For the fluctuating component of spin, Roch and Mul®r (
followed by Koenig and Kellar3, Eq. [11]), wrote

0.0 -4 - ]
10 100 1000 (s2) = [1 - Bg(x)?]S(S+ 1)/3, [13]

Proton Larmor frequency (MHz)

_ based on the fact th&s>) must approach zero as the alignment
FIG. 3. Inner-sphere relaxation rates,Ti/and 17, (Egs. [10] and [11]), Kecomes complete. As shown in Fig. 1, Eq. [13] is an improve

for S= 25,7 = 0.5 ns, andr, = 37 (solid lines). For comparison, the rates . . L .
without the susceptibility effect (standard relaxation equations) are shown g}em over Eq. [5], but it still leaves a significant error, which

dotted lines. Note that the magnitude of the susceptibility effect depends on FeCOMES worse at higher spins. The correct expression, as"
motional correlation timer, as well as on the total correlation timeA term  have shown, is Eq. [9].

that is important at low fields has been omitted from these plots. . .
Relaxation Equations

duces a second difference from the standard equations that re-l:he equations fof, and'T, are obtained by modifying the

mains even forr = 1, even if referring to a susceptibility effectStandard outer-'spher'e _equations as before_, using .E

becomes not approp,riate. [9] for the fluctuating spin instead of Eq. [13]. The final result is
As shown in Fig. 3, the effect of susceptibility dn is partic-

ularly strong because of the so-called “secular” terms in Eq. [11]1/T, = 60%{53 i@, T Ts— ) +

That is, the additive constants “4” permit the first term of,1b

continue to increase (with increasiBgor 7,) despite the spectral X .|

density functiorj;. For T,, the situation is different; both compo- — Sceothog — SC] Jolon, 7o, 78)} [14]

nents of 1T, fall off because of th factors, with the Curie term

falling first because it has the lower breakpoint. Thyexhibits 17,

a noticeable susceptibility effect only if the aligned comporgnt

S(S+ 1)

c Td{ Sé[sjo(wla Tdy Ts — OO) + 4]0(01 Tdy Ts — 30)]

becomes significant before the first breakpoint is reached#(gt 1/ X

Even then the increase inTL/will fall off with j;, and there may + [S(S +1) - Sceoth 5 — Sé}

even be a net reduction before the second breakpoint is reached (at

1/7). This explains why the susceptibility effect can either increase X [Bjo(@r, Tgs 7s) + 4jo(0, T, TS)]}, [15]
or decrease T/. In many situations the susceptibility effect®p

positive or negative, is too small to be of interest, but for larger

spins, typical of SPM particles, these deviations can be significaffierec = (16m/135000)%°ysy/Na[M)/r®. In these equa-
tions, 74 is the motional (diffusion) time constant(?/D), .

OUTER-SPHERE RELAXATION is the longitudinal electronic relaxation tiné, is Avogadro’s
number, [M] is the molar concentration of magnetized particle:
The first attempt to address the question of relaxation caused(symoles per liter)y is the distance of closest approach, &d

magnetic “nanoparticles” was made by Gillis and Koer#}y ( is the water diffusion coefficient.
using outer-sphere theory. This theory applies to water protonsThe spectral density function for outer-sphere relaxafigns
that diffuse past or near magnetic ions or particles, but do not bifi@ore complex thaf, and depends separately enand s (5),
However, that paper failed to take into account the “Curie” effect Vo
(aligned magnetization), and therefore the secular term was un- i@, Tq T = Re[ 1+Q774 ]
derestimated by a factor of 3. The alignment was later taken into " "¢ 'S 1+ QY2+ 40/9+ Q%%9|"
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whereQ) = (io + 1/1y)74. However, its behavior is similar to (Note that the spectral density function used here involves th
that of j; (see Fig. 2). In fact, ifry < 74, it is essentially transverse electron relaxation timg, not the longitudinal time
proportional tg;, but with a low-field value less than unity (butused earliers,.) These equations may be added to Egs. [14
never less than®/4r,), and with a breakpoint around= 7.*. and [15] to obtain the corrected versions of Egs. [13a] an
As the ratior/r, increases, the low-field value pfapproaches [13b] in Ref. @).
unity, and the decrease becomes more gradual, while in the
limit 7, < 7, the breakpoint approacheg'. (This observation High-Spin Limit
corrects an additional error in Ref3)( in which j,(0, 14, 75)
was incorrectly set to unity for all values ef.)

The similarity between Egs. [14] and [15] and Egs. [10] a
[11] is obvious, and the interpretation is equally “transparent.”

If S> 1, the Brillouin function reduces to the Langevin
n%mction,

L(x) = coth(x) — 1/x.

Low-Field Terms
o ) _ Since SPM patrticles, by definition, have high spins, it is usefu
The principal difference between Refg) (and @) is the (4 restate the relaxation equations in terms of the Langevi

inclusion of an electronic precession term in the latter. Thignction. This entails changing parameters from sfirto
term, which is present in the standard relaxation equations fﬁégnetic momeng, defined by

PM ions, is usually negligible at high fields (i.e., when the
susceptibility effect becomes important), and was therefore
omitted by Gueron. While it is important at low fields, its
applicability to SPM particles is complicated by the crystal-
line anisotropy; this question is discussed in a separate puﬁf?— thatx =
cation ©).

Because this term was included in Reg),(we will tempo- pe = pb(x), [19]
rarily ignore the anisotropy effect and reevaluate the term in
light of the above theory. The term contains contributiorsnd Eq. [8] becomes
arising from the correlation functions of the electronic trans-
verse spin components. Their amplitudes are not given by Eq. (nd = uq1-2L(x)/x], [20]
[9], but they can easily be estimated as

p = fiysS,

wB/kT. With this change, Eq. [4] becomes

where we have used the property Jim[y coth(y)] = 1, for

(S,S.) =(S) +(S)) +(S) y = %. Finally, the mean-squared fluctuating componeni of
— S(S+ 1) — (S +(S) (Eq. [9]) is given by

X 2 2 2rq 2
= (Coth28+ 1>SC [16] <Mz> Kc %% [1 2L(X)/X L (X)], [21]

and the transverse fluctuating component is

and similarly
(w3 + () = n2L(X)/x. [22]
X
(8-8) = <C0th28_ 1) So [17] Making these substitutions in Eqgs. [14] and [15], we obtain fo

the relaxation rates at high field
whereS, = S, + iS,, andS_ = S, — iS,. These equations
demonstrate that the spin fluctuations act equally distrib-  1/T;
uted along the three spatial coordinates, as was implicitly
assumed in the derivation of Eq. [13)(
Introducing Eqgs. [16] and [17] into the expressions for thel/T,
low-field contributions 8) leads to the corrected terms

¢’ w27 BLA(X) jow), T4 Ts—> )
+ 31— 2(L(¥)/x) — LA (%) 1jolen, Ta, 75)} [234]

C,IJ’ZTd{LZ( X)[‘?’] o(wlv Tds TS% OO)
+ 4j,(0, 14, Ts— )] + [1 — 2L(X)/x — L*(x)]
X X [3j0(wll T TS) + 4j0(0! Tay TS)]}! [23b]
[1/T]y = 7C&Td00t’"< 28)]-0(0057 Tar Ts2) [18a]
wherec’ = (16m/135000)7NA[M]/r>.

_ X Applying the same results to the low-field terms, as given b
(17Tl 6'5CS°T"C°“< 25)10(“’3' T 7sd- 11801 £ o i1ga] and [18b], we obtain
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1T,y = 7¢’ w2t L(X)/X]j(ws, T T 24a ings, 11th Annual Meeting of the Society of Magnetic Resonance in
[ l]lf H d[ ( ) ]JO( s SZ) [ ] Medicine,” Works in Progress, 1447 (1992).

[1/T,]y = 13c’ MZTd[L(X)/X]jo(ws, To, Ts2)-  [24D] 3. S.H. Koenig and K. E. Kellar, Theory of 1/T, and 1/T, NMRD profiles
of solutions of magnetic nanoparticles, Magn. Reson. Med. 34,
Again, these quantities may be added to Egs. [23a] and [23b}227-233 (1995).

to obtain the complete correct expressions that correspond*td- Gillis and S. H. Koenig, Transverse relaxation of solvent pro-
Eds [133] and [13b] of Ref3§ tons induced by magnetized spheres: application to ferritin,
gs. ~X erythrocytes, and magnetite, Magn. Reson. Med. 5, 323-345

(1987).
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