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Local field gradients created by paramagnetic entities shorten
ater proton relaxation times, particularly T2. This “novel” relax-
tion mechanism, now known as susceptibility-induced relaxation,
as described twenty years ago by Gueron, and later extended by
thers to superparamagnetic particles which have a much larger
agnetization. Unfortunately, because of subtle but significant

rrors, those results are valid only in the strict zero-field limit.
hese errors are corrected in the present article, and new versions
f the relaxation equations are presented. The correction is shown
o be significant, not only for transverse and longitudinal relax-
tion in aqueous superparamagnetic colloids, where the “Gueron”
ffect is known to be important, but even in some cases for
ransverse paramagnetic relaxation. © 1999 Academic Press

Key Words: susceptibility-induced relaxation; Curie relaxation;
uperparamagnetic particles; relaxometry; nuclear magnetic relax-
tion dispersion (NMRD).

INTRODUCTION

In 1975, Maurice Gueron (1) introduced “a novel mech
ism” into the theory of nuclear magnetic relaxation by e

ronic spins, viz., the effect of thetime-averagedelectronic
omentm as it aligns with the applied fieldB0. This induced
agnetization creates local field inhomogeneities that dep
earby protons, and hence causeT2-shortening. Since the fie
radients are a microscopic manifestation of macroscopic
eptibility, the effect is often referred to as susceptibil
nduced relaxation. Gueron called the aligned componen
Curie spin” because the alignment of paramagnetic (PM)
ncreases with field strength according to Curie’s law. He
howed that its effect on nuclear magnetic relaxation di
rom that of the fluctuating spin because “relaxation by
onstant Curie spin . . . is modulated only by the molecul
otion . . . [while] relaxation by the field of the fluctuating pa
f the spin [is] modulated both by spin relaxation and mo
lar motion.”
Gueron’s theory has become more important with the e

ence of a new type of MRI contrast agent known as mag
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402090-7807/99 $30.00
opyright © 1999 by Academic Press
ll rights of reproduction in any form reserved.
-

se

s-
-
he
s
n
s
e

-

r-
tic

nanoparticles”; these are small coated ferrimagnetic cry
ith superparamagnetic (SPM) moments that are much l

han PM moments. The theory was accordingly extende
escribe such particles (2, 3), using the Brillouin function
ather than Curie’s law, to describe the larger induced ma
ization.

Unfortunately, all of these treatments contain subtle
ignificant errors. The purpose of this note is to correct t
rrors and to present, for the first time, what we hope
orrect theory for this important type of nuclear magn
elaxation. For ease of comparison, we have used the
otation as the original references wherever possible, w
aintaining internal consistency. All equations are in cent

er-gram-second (cgs) units.

INNER-SPHERE RELAXATION

Gueron (1) was concerned with PM ions, and therefore u
inner-sphere” relaxation theory, which is the dominant me
nism for most PM ions. Inner-sphere relaxation occurs w
rotons bind temporarily to ions or ion complexes; the re

ng rapid relaxation is then transferred to the free proton
y proton or water exchange.

ecomposition of Spin

Gueron separated the component of electronic spin alon
pplied field,Sz, into two subcomponents: a time-averaged
s he called it, “Curie”) spin,̂Sz& 5 SC, and a fluctuating spin
z:

Sz 5 SC 1 sz. [1]

ince, by definition,̂ sz& 5 0, it follows that

^Sz
2& 5 SC

2 1 ^sz
2&. [2]

ueron then showed that the effect of each componen
roton relaxation can be obtained by modifying the stan
elaxation equations. Now these equations contain coeffic
hat are based on the zero-field relation

ue,
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403SUSCEPTIBILITY-INDUCED T2 SHORTENING
^Sz
2& 5 S~S1 1!/3. [3]

he modifications, therefore, involve replacing the coeffic
(S 1 1)/3 by thecorrect expression for̂Sz

2& in the presenc
f alignment.

ime-Averaged Component

Gueron used Curie’s law to describe the time-avera
ligned spin, as is appropriate for PM ions. For the sak
reater generality, we shall use the Brillouin functionBS

which, of course, reduces to Curie’s law for small spins). T
e write

SC 5 ^Sz& 5 SBS~ x!, [4]

here

BS~ x! 5
S1 1

2

S
coth

~S1 1
2! x

S
2

1

2S
coth

x

2S
,

x 5 S\gSB0/~kT!,

nd the constants have their usual meanings.
The relaxation effect ofSC is obtained by replacingS(S 1

)/3 with SC
2 in the standard relaxation equations, and

etting the electronic relaxation time2 tS 3 ` (1). The latter
hange is necessary becauseSC, being a time average, is n
ffected by electronic spin fluctuations. This part of Guer

reatment remains unaltered.

luctuating Component

As the aligned component grows, the mean-squared fl
ting component̂ sz

2& is clearly reduced from its zero-fie
alue ofS(S 1 1)/3. This consideration led Gueron to wr

^sz
2& 5 S~S1 1!/3 2 SC

2, [5]

nder the assumption that^Sz
2&—i.e., the sum of the squar

mplitudes of average and fluctuating spins (Eq. [2])—rem
onstant. But̂ Sz

2& is not constant; it increases steadily fro
(S 1 1)/3 atzero field toS2 in the high-field limit.
A correct expression for̂sz

2& may be obtained from th
ollowing general expression for the total mean-squared sp
he z-direction:

^Sz
2& 5 ~1/Z! O

m52S

S

m2emx/S, [6]

2 There are actually two electronic relaxation times—longitudinal (tS1) and
ransverse (tS2); it is the former which is referred to here. The subscript
mitted for simplicity of notation.
t

d
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s

o

s

u-
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in

here

Z 5 O
m5 2S

S

emx/S.

sing the definition of average magnetization,

^Sz& 5 ~1/Z! O
m5 2S

S

m emx/S,

hich may be written as

^Sz& 5 ~S/Z!
Z

 x
, [7]

e obtain

^Sz
2& 5 ~S2/Z!

 2Z

 x2

5 ~S/Z!
~Z z SC!

 x

5 S
SC

 x
1 SC

2 .

ifferentiating and squaring the expression forSC (Eq. [4]),
nd using the identity cosh2( x) 2 sinh2( x) 5 1, we finally
btain

^Sz
2& 5 S~S1 1! 2 SCcoth

x

2S
. [8]

hus the mean-squared fluctuating component is, from Eq

^sz
2& 5 ^Sz

2& 2 SC
2 5 S~S1 1! 2 SCcoth

x

2S
2 SC

2. [9]

quations [5] and [9] are compared in Fig. 1, forS 5 25.
hile they agree at zero field, the difference increases, ini

sx2, and becomes quite large at high fields. (The valueS 5
5 was chosen to illustrate the correction more clearly,
lso because SPM particles, discussed below, have much
pins. However, even for PM spins such asS 5 7

2, the effect o
he correction is noticeable at 7 T, the field used by Guero
n illustration.)

elaxation Equations

The equations forT1 andT2 may now be obtained usin
he modification procedure described by Gueron, but u
q. [9] instead of Eq. [5] for the fluctuating spin. The fi

esult is
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404 GILLIS, ROCH, AND BROOKS
1/T1 5 ~6/5!D 2 HSC
2tD j i~v, tD! 1 FS~S1 1!

2 SCcoth
x

2S
2 SC

2G tj i~v, t!J [10]

1/T2 5 ~1/5!D 2 HSC
2tD@3j i~v, tD! 1 4# 1 FS~S1 1!

2 SCcoth
x

2S
2 SC

2G t@3j i~v, t! 1 4#J , [11]

hereD 5 \g IgS/r
3. Following Gueron, a term in the sta

ard equations that involves the electron Larmor frequ
as omitted as being negligible at high fields. In these e

ions, g I and gS are, respectively, the proton and elect
yromagnetic ratios,r is the binding distance, andt is the
orrelation time of the fluctuating magnetic field seen by
roton, given by

t 21 5 t D
21 1 t S

21,

here tD is the motional time constant (a combination
otational correlation time and residence time), andtS is the
lectronic relaxation time.2 (Note that this definition oftD,

ntroduced by Gueron, is not the same as the usual definiti
D as diffusion time.)
The dependence on magnetic fieldB0 (or, equivalently, on

FIG. 1. Three different expressions for^sz
2&, the mean-squared fluctuati

omponent of spin along the applied field. The solid line shows the co
xpression, Eq. [9], and the dotted and dashed lines show earlier inc
ersions, Eqs. [5] and [13], respectively. The mean-squared aligned spSC

2,
s also shown for comparison (long dashed line). The plots are drawn foS 5
5, a value that is intermediate between PM and SPM spins.
y
a-

e

of

roton Larmor frequencyv) is incorporated in the inner-sphe
pectral density function

j i~v, t! 5 1/~1 1 v 2t 2!. [12]

his function is unity at zero frequency and falls to zero at h
requencies, with a breakpoint atv 5 t21 (see Fig. 2).

Equations [10] and [11] should replace Eqs. [14] and [15
ef. (1) (although the succeeding Eqs. [149] and [159] remain
alid because of the stated restrictions). The meaning o
quations is, as Gueron said, “transparent.” The first line of
quation represents relaxation by the “Curie spin,” and is pro

ional to SC
2; the second line corresponds to relaxation by

esidual fluctuating spin, and falls off asSC increases. Thes
quations are plotted in Fig. 3 forS5 25 (again, an intermedia
alue between PM and SPM spins),t 5 0.5 ns, andtD 5 3t (i.e.,
S 5 tD/2), and they are compared with the standard relax
quations (dotted lines), where^Sz

2& is supposed to be field ind
endent and equal toS(S 1 1)/3. The susceptibility effect in
reases strongly ast becomes smaller thantD, and the differenc
rom the standard relaxation rates is already important fortD 5
t. This alters Gueron’s assertion (1) that the new equation
differ significantly from [the standard ones] only iftD @ t.” His
tatement followed from the (incorrect) assumption that^Sz

2& is
onstant, since the reduction in the fluctuating term (proport
o SC

2) then tends to balance the relaxation effect of the Curie
also proportional toSC

2) ast approachestD. However, a prope
ccounting of the field dependence of^Sz

2&, as in Eq. [8], intro

FIG. 2. Spectral density functions used in the relaxation equations
olid line shows the inner-sphere function,j i, for tD 5 2 ns. The long and sho
ashed lines show the outer-sphere function,j o, for tD 5 2 ns withtS 5 1 and
000 ns, respectively.
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405SUSCEPTIBILITY-INDUCED T2 SHORTENING
uces a second difference from the standard equations th
ains even fort > tD, even if referring to a susceptibility effe
ecomes not appropriate.
As shown in Fig. 3, the effect of susceptibility onT2 is partic-

larly strong because of the so-called “secular” terms in Eq.
hat is, the additive constants “4” permit the first term of 1/T2 to
ontinue to increase (with increasingSC or tD) despite the spectr
ensity functionj i. ForT1, the situation is different; both comp
ents of 1/T1 fall off because of thej i factors, with the Curie term

alling first because it has the lower breakpoint. ThusT1 exhibits
noticeable susceptibility effect only if the aligned componenSC

ecomes significant before the first breakpoint is reached (attD).
ven then the increase in 1/T1 will fall off with j i, and there ma
ven be a net reduction before the second breakpoint is reac
/t). This explains why the susceptibility effect can either incre
r decrease 1/T1. In many situations the susceptibility effect onT1,
ositive or negative, is too small to be of interest, but for la
pins, typical of SPM particles, these deviations can be signifi

OUTER-SPHERE RELAXATION

The first attempt to address the question of relaxation caus
agnetic “nanoparticles” was made by Gillis and Koenig4),
sing outer-sphere theory. This theory applies to water pr

hat diffuse past or near magnetic ions or particles, but do not
owever, that paper failed to take into account the “Curie” e

aligned magnetization), and therefore the secular term wa
erestimated by a factor of 3. The alignment was later taken

FIG. 3. Inner-sphere relaxation rates, 1/T1 and 1/T2 (Eqs. [10] and [11])
or S 5 25, t 5 0.5 ns, andtD 5 3t (solid lines). For comparison, the ra
ithout the susceptibility effect (standard relaxation equations) are show
otted lines. Note that the magnitude of the susceptibility effect depends
otional correlation timetD, as well as on the total correlation timet. A term

hat is important at low fields has been omitted from these plots.
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ccount by Roch and Muller (2), followed by Koenig and Kella
3), using a variation of Gueron’s approach.

ime-Averaged Component

The approach taken, as before, is to separate thez-compo-
ent of spin into two parts: static and fluctuating (Eq. [1])

his case, use of the Brillouin function to describeSC, the
ime-averagedz-magnetization, is mandatory because of
uch larger magnetic moment. As before, the relaxation e
f SC is obtained by replacingS(S 1 1)/3 with SC

2, using Eq
4], in the standard relaxation equations and setting the
ronic relaxation time2 tS 3 `.

luctuating Component

For the fluctuating component of spin, Roch and Muller2),
ollowed by Koenig and Kellar (3, Eq. [11]), wrote

^sz
2& 5 @1 2 BS~ x! 2#S~S1 1!/3, [13]

ased on the fact that^sz
2& must approach zero as the alignm

ecomes complete. As shown in Fig. 1, Eq. [13] is an impr
ent over Eq. [5], but it still leaves a significant error, wh
ecomes worse at higher spins. The correct expression,
ave shown, is Eq. [9].

elaxation Equations

The equations forT1 and T2 are obtained by modifying th
tandard outer-sphere equations as before, using
9] for the fluctuating spin instead of Eq. [13]. The final resu

1/T1 5 6ctdHSC
2 j o~v I, td, tS3 `! 1 FS~S1 1!

2 SCcoth
x

2S
2 SC

2G j o(vI, td, tS)J [14]

1/T2 5 c tdHSC
2@3j o~vI, td, tS3 `! 1 4j o~0, td, tS3 `!#

1 FS~S1 1! 2 SCcoth
x

2S
2 SC

2G
3 @3j o(vI, td, tS! 1 4j o(0, td, tS)]J, [15]

herec 5 (16p/135000)\ 2g s
2g I

2NA[M]/ r 3. In these equa
ions,td is the motional (diffusion) time constant (5r 2/D), ts

s the longitudinal electronic relaxation time,NA is Avogadro’s
umber, [M] is the molar concentration of magnetized parti
in moles per liter),r is the distance of closest approach, anD
s the water diffusion coefficient.

The spectral density function for outer-sphere relaxation,jo, is
ore complex thanj i, and depends separately ontd andts (5),

j o~v, td, tS! 5 Re F 1 1 V 1/ 2/4

1 1 V 1/ 2 1 4V/9 1 V 3/ 2/9G ,

by
he
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406 GILLIS, ROCH, AND BROOKS
hereV 5 (iv 1 1/t s)td. However, its behavior is similar
hat of j i (see Fig. 2). In fact, ifts ! td, it is essentially
roportional toj i, but with a low-field value less than unity (b
ever less than 9ts/4td), and with a breakpoint aroundv 5 ts

21.
s the ratiots/td increases, the low-field value ofj o approache
nity, and the decrease becomes more gradual, while i

imit td ! ts, the breakpoint approachestd
21. (This observatio

orrects an additional error in Ref. (3), in which j o(0, td, ts)
as incorrectly set to unity for all values ofts.)
The similarity between Eqs. [14] and [15] and Eqs. [10]

11] is obvious, and the interpretation is equally “transpare

ow-Field Terms

The principal difference between Refs. (2) and (3) is the
nclusion of an electronic precession term in the latter.
erm, which is present in the standard relaxation equation
M ions, is usually negligible at high fields (i.e., when
usceptibility effect becomes important), and was there
mitted by Gueron. While it is important at low fields,
pplicability to SPM particles is complicated by the crys

ine anisotropy; this question is discussed in a separate p
ation (6).
Because this term was included in Ref. (3), we will tempo-

arily ignore the anisotropy effect and reevaluate the ter
ight of the above theory. The term contains contributi
rising from the correlation functions of the electronic tra
erse spin components. Their amplitudes are not given b
9], but they can easily be estimated as

^S1S2& 5 ^Sx
2& 1 ^Sy

2& 1 ^Sz&

5 S~S1 1! 2 ^Sz
2& 1 ^Sz&

5 Scoth
x

2S
1 1DSC [16]

nd similarly

^S2S1& 5 Scoth
x

2S
2 1DSC, [17]

hereS1 5 Sx 1 iSy, andS2 5 Sx 2 iSy. These equation
emonstrate that the spin fluctuations arenot equally distrib-
ted along the three spatial coordinates, as was impl
ssumed in the derivation of Eq. [13] (2).
Introducing Eqs. [16] and [17] into the expressions for

ow-field contributions (3) leads to the corrected terms

@1/T1# lf 5 7cSCtdcothS x

2SD j o(vs, td, tS2) [18a]

@1/T2# lf 5 6.5cSCtdcothS x

2SD j o(vS, td, tS2). [18b]
he

d
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or
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Note that the spectral density function used here involve
ransverse electron relaxation timets2, not the longitudinal tim
sed earlier,ts.) These equations may be added to Eqs.
nd [15] to obtain the corrected versions of Eqs. [13a]

13b] in Ref. (3).

igh-Spin Limit

If S @ 1, the Brillouin function reduces to the Lange
unction,

L~ x! 5 coth~ x! 2 1/x.

ince SPM particles, by definition, have high spins, it is us
o restate the relaxation equations in terms of the Lang
unction. This entails changing parameters from spinS to
agnetic momentm, defined by

m 5 \gSS,

o thatx 5 mB0/kT. With this change, Eq. [4] becomes

mC 5 mL~ x!, [19]

nd Eq. [8] becomes

^m z
2& 5 m 2@1 2 2L~ x!/x#, [20]

here we have used the property limy30 [ y coth(y)] 5 1, for
5 x

2S. Finally, the mean-squared fluctuating component om z

Eq. [9]) is given by

^m z
2& 2 m C

2 5 m 2@1 2 2L~ x!/x 2 L 2~ x!#, [21]

nd the transverse fluctuating component is

^m x
2& 1 ^m y

2& 5 m 22L~ x!/x. [22]

aking these substitutions in Eqs. [14] and [15], we obtain
he relaxation rates at high field

1/T1 5 c9m 2td$3L 2~ x! j o(vI, td, tS3 `!

1 3@1 2 2~L~x!/x! 2 L2~ x!# j o(vI, td, tS)} [23a]

1/T2 5 c9m 2td$L
2~ x!@3j o(vI, td, tS3 `!

1 4j o~0, td, tS3 `!# 1 @1 2 2L~ x!/x 2 L 2~ x!#

3 @3j o~v I, td, tS! 1 4j o~0, td, tS!#%, [23b]

herec9 5 (16p/135000)g I
2NA[M]/ r 3.

Applying the same results to the low-field terms, as give
qs. [18a] and [18b], we obtain
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407SUSCEPTIBILITY-INDUCED T2 SHORTENING
@1/T1# lf 5 7c9m 2td@L~ x!/x# j o(vS, td, tS2) [24a]

@1/T2# lf 5 13c9m 2td@L~ x!/x# j o(vS, td, tS2). [24b]

gain, these quantities may be added to Eqs. [23a] and
o obtain the complete correct expressions that correspo
qs. [13a] and [13b] of Ref. (3).
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